Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In a companion paper, we put forth a thermodynamic model for complex formation via a chemical reaction involving multiple macromolecular species, which may subsequently undergo liquid–liquid phase separation and a further transition into a gel-like state. In the present work, we formulate a thermodynamically consistent kinetic framework to study the interplay between phase separation, chemical reaction, and aging in spatially inhomogeneous macromolecular mixtures. A numerical algorithm is also proposed to simulate domain growth from collisions of liquid and gel domains via passive Brownian motion in both two and three spatial dimensions. Our results show that the coarsening behavior is significantly influenced by the degree of gelation and Brownian motion. The presence of a gel phase inside condensates strongly limits the diffusive transport processes, and Brownian motion coalescence controls the coarsening process in systems with high area/volume fractions of gel-like condensates, leading to the formation of interconnected domains with atypical domain growth rates controlled by size-dependent translational and rotational diffusivities.more » « lessFree, publicly-accessible full text available November 14, 2025
-
Multicomponent macromolecular mixtures often form higher-order structures, which may display non-ideal mixing and aging behaviors. In this work, we first propose a minimal model of a quaternary system that takes into account the formation of a complex via a chemical reaction involving two macromolecular species; the complex may then phase separate from the buffer and undergo a further transition into a gel-like state. We subsequently investigate how physical parameters such as molecular size, stoichiometric coefficients, equilibrium constants, and interaction parameters affect the phase behavior of the mixture and its propensity to undergo aging via gelation. In addition, we analyze the thermodynamic stability of the system and identify the spinodal regions and their overlap with gelation boundaries. The approach developed in this work can be readily generalized to study systems with an arbitrary number of components. More broadly, it provides a physically based starting point for the investigation of the kinetics of the coupled complex formation, phase separation, and gelation processes in spatially extended systems.more » « less
-
Abstract In cells, phase-separated liquid condensates interact mechanically with surrounding elastic networks such as chromatin and cytoskeleton. By considering the trade-offs between elastic, wetting, and interfacial energies, we theoretically show that three droplet phases can be thermodynamically stable: macroscopic droplets that either cavitate or permeate the network, and mesh-size–limited microdroplets. We show that network strain stiffening further enhances this latter size-limitation effect. Our theory predicts the possibility of yet-unobserved droplet phases in the cytoplasm and nucleoplasm.more » « less
-
All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N 2 gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N 2 crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N 16 molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N 16 crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N 2 from the N 5 group as revealed by the MD simulations.more » « less
-
During development, organisms acquire three-dimensional (3D) shapes with important physiological consequences. While basic mechanisms underlying morphogenesis are known in eukaryotes, it is often difficult to manipulate them in vivo. To circumvent this issue, here we present a study of developingVibrio choleraebiofilms grown on agar substrates in which the spatiotemporal morphological patterns were altered by varying the agar concentration. Expanding biofilms are initially flat but later undergo a mechanical instability and become wrinkled. To gain mechanistic insights into this dynamic pattern-formation process, we developed a model that considers diffusion of nutrients and their uptake by bacteria, bacterial growth/biofilm matrix production, mechanical deformation of both the biofilm and the substrate, and the friction between them. Our model shows quantitative agreement with experimental measurements of biofilm expansion dynamics, and it accurately predicts two distinct spatiotemporal patterns observed in the experiments—the wrinkles initially appear either in the peripheral region and propagate inward (soft substrate/low friction) or in the central region and propagate outward (stiff substrate/high friction). Our results, which establish that nonuniform growth and friction are fundamental determinants of stress anisotropy and hence biofilm morphology, are broadly applicable to bacterial biofilms with similar morphologies and also provide insight into how other bacterial biofilms form distinct wrinkle patterns. We discuss the implications of forming undulated biofilm morphologies, which may enhance the availability of nutrients and signaling molecules and serve as a “bet hedging” strategy.more » « less
-
Engineers have long studied how mechanical instabilities cause patterns to form in inanimate materials, and recently more attention has been given to how such forces affect biological systems. For example, stresses can build up within a tissue if one layer grows faster than an adjacent layer. The tissue can release this stress by wrinkling, folding or creasing. Though ancient and single-celled, bacteria can also develop spectacular patterns when they exist in the lifestyle known as a biofilm: a community of cells adhered to a surface. But do mechanical instabilities drive the patterns seen in biofilms? To investigate, Yan, Fei, Mao et al. grew biofilms of the bacterium called Vibrio cholerae – which causes the disease cholera – on solid, non-growing ‘substrates’. This work revealed that as the biofilms grow, their expansion is constrained by the substrate, and this situation generates mechanical stresses. To release the stresses, the biofilm initially folds to form wrinkles. Later, as the biofilm expands further, small parts of it detach from the substrate to form blisters. The same forces that keep water droplets spherical (known as interfacial forces) dictate how the blisters evolve, interact, and eventually shape the expanding biofilm. Using these principles, Yan et al. could engineer the biofilm into desired shapes. Collectively, the results presented by Yan et al. connect the shape of the biofilm surface with its material properties, in particular its stiffness. Understanding this relationship could help researchers to develop new ways to remove harmful biofilms, such as those that cause disease or that damage underwater structures. The stiffness of biofilms is already known to affect how well bacteria can resist antibiotics. Future studies could look for new genes or compounds that change the material properties of a biofilm, thereby altering the biofilm surface.more » « less
-
Abstract Helium, ammonia and ice are among the major components of giant gas planets, and predictions of their chemical structures are therefore crucial in predicting planetary dynamics. Here we demonstrate a strong driving force originating from the alternation of the electrostatic interactions for helium to react with crystals of polar molecules such as ammonia and ice. We show that ammonia and helium can form thermodynamically stable compounds above 45 GPa, while ice and helium can form thermodynamically stable compounds above 300 GPa. The changes in the electrostatic interactions provide the driving force for helium insertion under high pressure, but the mechanism is very different to those that occur in ammonia and ice. This work extends the reactivity of helium into new types of compounds and demonstrates the richness of the chemistry of this most stable element in the periodic table.more » « less
-
Abstract Biofilms, surface‐attached communities of bacterial cells, are a concern in health and in industrial operations because of persistent infections, clogging of flows, and surface fouling. Extracellular matrices provide mechanical protection to biofilm‐dwelling cells as well as protection from chemical insults, including antibiotics. Understanding how biofilm material properties arise from constituent matrix components and how these properties change in different environments is crucial for designing biofilm removal strategies. Here, using rheological characterization and surface analyses ofVibrio choleraebiofilms, it is discovered how extracellular polysaccharides, proteins, and cells function together to define biofilm mechanical and interfacial properties. Using insight gained from our measurements, a facile capillary peeling technology is developed to remove biofilms from surfaces or to transfer intact biofilms from one surface to another. It is shown that the findings are applicable to other biofilm‐forming bacterial species and to multiple surfaces. Thus, the technology and the understanding that have been developed could potentially be employed to characterize and/or treat biofilm‐related infections and industrial biofouling problems.more » « less
An official website of the United States government
